Diagnoses of an Eddy-Resolving Atlantic Ocean Model Simulation in the Vicinity of the Gulf Stream. Part I: Potential Vorticity

2001 ◽  
Vol 31 (2) ◽  
pp. 353-378 ◽  
Author(s):  
Mototaka Nakamura ◽  
Yi Chao
2013 ◽  
Vol 43 (9) ◽  
pp. 1924-1939 ◽  
Author(s):  
Haosheng Huang ◽  
Nan D. Walker ◽  
Ya Hsueh ◽  
Yi Chao ◽  
Robert R. Leben

Abstract The Loop Current frontal eddies (LCFEs) refer to cyclonic cold eddies moving downstream along the outside edge of the Loop Current in the eastern Gulf of Mexico. They have been observed by in situ measurements and satellite imagery, mostly downstream of the Campeche Bank continental shelf. Their evolution, simulated by a primitive equation ⅙° and 37-level Atlantic Ocean general circulation numerical model, is described in detail in this study. Some of the simulated LCFEs arise, with the passage through the Yucatan Channel of a Caribbean anticyclonic eddy, as weak cyclones with diameters less than 100 km near the Yucatan Channel. They then grow to fully developed eddies with diameters on the order of 150–200 km while moving along the Loop Current edge. Modeled LCFEs have a very coherent vertical structure with isotherm doming seen from 50- to ~1000-m depth. The Caribbean anticyclone and LCFE are two predominant features in this numerical model simulation, which account for 22% and 10%, respectively, of the short-term (period less than 100 days) temperature variance at 104.5 m in the complex empirical orthogonal function (CEOF) analysis. The source water inside the LCFEs that are generated by Caribbean anticyclonic eddy impingement can be traced back, using a backward-in-time Lagrangian particle-tracking method, to the western edge of the Caribbean Current in the northwest Caribbean Sea and to coastal waters near the northern Yucatan Peninsula. The model results indicating a pairing of anticyclonic and cyclonic eddies within and north of the Yucatan Channel are supported by satellite altimetry measurements during February 2002 when several altimeters were operational.


1998 ◽  
Vol 5 (3) ◽  
pp. 145-151
Author(s):  
A. D. Kirwan, Jr. ◽  
B. L. Lipphardt, Jr.

Abstract. Application of the Brown-Samelson theorem, which shows that particle motion is integrable in a class of vorticity-conserving, two-dimensional incompressible flows, is extended here to a class of explicit time dependent dynamically balanced flows in multilayered systems. Particle motion for nonsteady two-dimensional flows with discontinuities in the vorticity or potential vorticity fields (modon solutions) is shown to be integrable. An example of a two-layer modon solution constrained by observations of a Gulf Stream ring system is discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yumei Ding ◽  
Lei Ding

A hindcast of typical extratropical storm surge occurring in the Bohai Sea in October 2003 is performed using a three-dimensional (3D) Finite Volume Coastal Ocean Model (FVCOM). The storm surge model is forced by 10 m winds obtained from the Weather Research Forecasting (WRF) model simulation. It is shown that the simulated storm surge and tides agree well with the observations. The nonlinear interaction between the surge and astronomical tides, the spatial distribution of the maximum surge level, and the hydrodynamic response to the storm surge are studied. The storm surge is the interaction of the surge and the astronomical tides. The currents change rapidly during the storm surge and turn to be the unidirectional at some places where the tidal currents are usually rectilinear. The results show that the local surge current velocity in each depth, with a magnitude of the same order as the astronomic tidal currents, increases or decreases rapidly depending on the relationship between the winds and current directions. Furthermore, the current pattern gets more complicated under the influence of the direction of the winds, which might affect sand movement in the coastal water of the Bohai Sea.


2013 ◽  
Vol 26 (1) ◽  
pp. 231-245 ◽  
Author(s):  
Michael Winton ◽  
Alistair Adcroft ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
Larry W. Horowitz ◽  
...  

Abstract The influence of alternative ocean and atmosphere subcomponents on climate model simulation of transient sensitivities is examined by comparing three GFDL climate models used for phase 5 of the Coupled Model Intercomparison Project (CMIP5). The base model ESM2M is closely related to GFDL’s CMIP3 climate model version 2.1 (CM2.1), and makes use of a depth coordinate ocean component. The second model, ESM2G, is identical to ESM2M but makes use of an isopycnal coordinate ocean model. The authors compare the impact of this “ocean swap” with an “atmosphere swap” that produces the GFDL Climate Model version 3 (CM3) by replacing the AM2 atmospheric component with AM3 while retaining a depth coordinate ocean model. The atmosphere swap is found to have much larger influence on sensitivities of global surface temperature and Northern Hemisphere sea ice cover. The atmosphere swap also introduces a multidecadal response time scale through its indirect influence on heat uptake. Despite significant differences in their interior ocean mean states, the ESM2M and ESM2G simulations of these metrics of climate change are very similar, except for an enhanced high-latitude salinity response accompanied by temporarily advancing sea ice in ESM2G. In the ESM2G historical simulation this behavior results in the establishment of a strong halocline in the subpolar North Atlantic during the early twentieth century and an associated cooling, which are counter to observations in that region. The Atlantic meridional overturning declines comparably in all three models.


Ocean Science ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 425-438 ◽  
Author(s):  
G. Candille ◽  
J.-M. Brankart ◽  
P. Brasseur

Abstract. A realistic circulation model of the North Atlantic ocean at 0.25° resolution (NATL025 NEMO configuration) has been adapted to explicitly simulate model uncertainties. This is achieved by introducing stochastic perturbations in the equation of state to represent the effect of unresolved scales on the model dynamics. The main motivation for this work is to develop ensemble data assimilation methods, assimilating altimetric data from past missions Jason-1 and Envisat. The assimilation experiment is designed to provide a description of the uncertainty associated with the Gulf Stream circulation for years 2005/2006, focusing on frontal regions which are predominantly affected by unresolved dynamical scales. An ensemble based on such stochastic perturbations is first produced and evaluated using along-track altimetry observations. Then each ensemble member is updated by a square root algorithm based on the SEEK (singular evolutive extended Kalman) filter (Brasseur and Verron, 2006). These three elements – stochastic parameterization, ensemble simulation and 4-D observation operator – are then used together to perform a 4-D analysis of along-track altimetry over 10-day windows. Finally, the results of this experiment are objectively evaluated using the standard probabilistic approach developed for meteorological applications (Toth et al., 2003; Candille et al., 2007). The results show that the free ensemble – before starting the assimilation process – correctly reproduces the statistical variability over the Gulf Stream area: the system is then pretty reliable but not informative (null probabilistic resolution). Updating the free ensemble with altimetric data leads to a better reliability with an information gain of around 30% (for 10-day forecasts of the SSH variable). Diagnoses on fully independent data (i.e. data that are not assimilated, like temperature and salinity profiles) provide more contrasted results when the free and updated ensembles are compared.


2019 ◽  
Vol 49 (8) ◽  
pp. 2115-2132 ◽  
Author(s):  
Joël J.-M. Hirschi ◽  
Eleanor Frajka-Williams ◽  
Adam T. Blaker ◽  
Bablu Sinha ◽  
Andrew Coward ◽  
...  

AbstractSatellite observations and output from a high-resolution ocean model are used to investigate how the Loop Current in the Gulf of Mexico affects the Gulf Stream transport through the Florida Straits. We find that the expansion (contraction) of the Loop Current leads to lower (higher) transports through the Straits of Florida. The associated surface velocity anomalies are coherent from the southwestern tip of Florida to Cape Hatteras. A simple continuity-based argument can be used to explain the link between the Loop Current and the downstream Gulf Stream transport: as the Loop Current lengthens (shortens) its path in the Gulf of Mexico, the flow out of the Gulf decreases (increases). Anomalies in the surface velocity field are first seen to the southwest of Florida and within 4 weeks propagate through the Florida Straits up to Cape Hatteras and into the Gulf Stream Extension. In both the observations and the model this propagation can be seen as pulses in the surface velocities. We estimate that the Loop Current variability can be linked to a variability of several Sverdrups (1Sv = 106 m3 s−1) through the Florida Straits. The exact timing of the Loop Current variability is largely unpredictable beyond a few weeks and its variability is therefore likely a major contributor to the chaotic/intrinsic variability of the Gulf Stream. However, the time lag between the Loop Current and the flow downstream of the Gulf of Mexico means that if a lengthening/shortening of the Loop Current is observed this introduces some predictability in the downstream flow for a few weeks.


Ocean Science ◽  
2007 ◽  
Vol 3 (1) ◽  
pp. 17-30 ◽  
Author(s):  
J. A. Polton ◽  
D. P. Marshall

Abstract. The circulation of the subtropical gyres can be decomposed into a horizontal recirculation along contours of constant Bernoulli potential and an overturning circulation across these contours. While the geometry and topology of Bernoulli contours is more complicated in the subtropical gyres than in the Southern Ocean, these subtropical overturning circulations are very much analogous to the overturning cell found in the Southern Ocean. This analogy is formalised through an exact integral constraint, including the rectified effects of transient eddies. The constraint can be interpreted either in terms of vertical fluxes of potential vorticity, or equivalently as an integral buoyancy budget for an imaginary fluid parcel recirculating around a closed Bernoulli contour. Under conditions of vanishing buoyancy and mechanical forcing, the constraint reduces to a generalised non-acceleration condition, under which the Eulerian-mean and eddy-induced overturning circulations exactly compensate. The terms in the integral constraint are diagnosed in an eddy-permitting ocean model in both the North Pacific subtropical gyre and the Southern Ocean. The extent to which the Eulerian-mean and eddy-induced overturning circulations compensate is discussed in each case.


Sign in / Sign up

Export Citation Format

Share Document